SkipNet: Learning Dynamic Routing in Convolutional Networks
نویسندگان
چکیده
Increasing depth and complexity in convolutional neural networks has enabled significant progress in visual perception tasks. However, incremental improvements in accuracy are often accompanied by exponentially deeper models that push the computational limits of modern hardware. These incremental improvements in accuracy imply that only a small fraction of the inputs require the additional model complexity. As a consequence, for any given image it is possible to bypass multiple stages of computation to reduce the cost of forward inference without affecting accuracy. We exploit this simple observation by learning to dynamically route computation through a convolutional network. We introduce dynamically routed networks (SkipNets) by adding gating layers that route images through existing convolutional networks and formulate the routing problem in the context of sequential decision making. We propose a hybrid learning algorithm which combines supervised learning and reinforcement learning to address the challenges of inherently non-differentiable routing decisions. We show SkipNet reduces computation by 30 90% while preserving the accuracy of the original model on four benchmark datasets. We compare SkipNet with SACT and ACT to show SkipNet achieves better accuracy with lower computation.
منابع مشابه
Creating Dynamic Sub-Route to Control Congestion Based on Learning Automata Technique in Mobile Ad Hoc Networks
Ad hoc mobile networks have dynamic topology with no central management. Because of the high mobility of nodes, the network topology may change constantly, so creating a routing with high reliability is one of the major challenges of these networks .In the proposed framework first, by finding directions to the destination and calculating the value of the rout the combination of this value with ...
متن کاملCreating Dynamic Sub-Route to Control Congestion Based on Learning Automata Technique in Mobile Ad Hoc Networks
Ad hoc mobile networks have dynamic topology with no central management. Because of the high mobility of nodes, the network topology may change constantly, so creating a routing with high reliability is one of the major challenges of these networks .In the proposed framework first, by finding directions to the destination and calculating the value of the rout the combination of this value with ...
متن کاملMulticast Routing in Wireless Sensor Networks: A Distributed Reinforcement Learning Approach
Wireless Sensor Networks (WSNs) are consist of independent distributed sensors with storing, processing, sensing and communication capabilities to monitor physical or environmental conditions. There are number of challenges in WSNs because of limitation of battery power, communications, computation and storage space. In the recent years, computational intelligence approaches such as evolutionar...
متن کاملCystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کاملDeterministic SkipNet
We present a deterministic scalable overlay network. In contrast, most previous overlay networks use randomness or hashing (pseudo-randomness) to achieve a uniform distribution of data and routing traffic.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1711.09485 شماره
صفحات -
تاریخ انتشار 2017